Volume: 06, Issue: 09 09/10/2008 
Phoenix inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day of the mission and left it in place until Sol 99 (September 4, 2008). Image credit: NASA/JPL-Caltech/University of Arizona/Texas.
Expand Image
The Robotic Arm Camera on NASA's Phoenix Mars Lander took this image on September 1 at about 4 a.m. local solar time during the 97th Martian day, or sol, since landing. Image credit: NASA/JPL-Caltech//University of Arizona/Max Planck Institute.
Expand Image
NASA's Phoenix Mars Lander widened the deepest trench it has excavated, dubbed "Stone Soup". Image credit: NASA/JPL-Caltech/University of Arizona/Texas A&M University.
Expand Image
 
Printer Friendly Version
 
Other Articles in This Issue:
Most Black Holes Might Come in Only Small and Large
Cassini Images Ring Arcs Among Saturn’s Moons
2008 Atlantic Hurricane Season Kicking Into High Gear
Resources Available to Educators
 

Spiky Probe on NASA Mars Lander Raises Vapor Quandary

A fork-like conductivity probe has sensed humidity rising and failing beside NASA’s Phoenix Mars Lander, but when stuck into the ground, its measurements so far indicate soil that is thoroughly and perplexingly dry.

“If you have water vapor in the air, every surface exposed to that air will have water molecules adhere to it that are somewhat mobile, even at temperatures well below freezing,” said Aaron Zent of NASA Ames Research Center, Moffett Field, California, lead scientists for Phoenix’s thermal and electroconductivity probe.

In below-freezing permafrost terrains on Earth, that thin layer of unfrozen water molecules on soil particles can grow thick enough to support microbial life. One goal for building the conductivity probe and sending it to Mars has been to see whether the permafrost terrain of the Martian arctic has detectable thin films of unfrozen water on soil particles. By gauging how electricity moves through the soil from one prong to another, the probe can detect films of water barely more than one molecule thick.

“Phoenix has other tools to find clues about whether water ice at the site has melted in the past, such as identifying minerals in the soil and observing soil particles with microscopes. The conductivity probe is our main tool for checking for present-day soil moisture,” said Phoenix Project Scientist Leslie Tamppari of NASA’s Jet Propulsion Laboratory, Pasadena, California.

Preliminary results from the latest insertion of the probe’s four needles into the ground match results from the three similar insertions in the three months since landing.

“All the measurements we’ve made so far are consistent with extremely dry soil,” Zent said. “There are no indications of thin films of moisture, and this is puzzling.”

Three other sets of observations by Phoenix, in addition to the terrestrial permafrost analogy, give reasons for expecting to find thin-film moisture in the soil.

One is the conductivity probe’s own measurements of relative humidity when the probe is held up in the air. “The relative humidity transitions from near zero to near 100 percent with every day-night cycle, which suggests there’s a lot of moisture moving in and out of the soil,” Zent said.

Another is Phoenix’s confirmation of a hard layer containing water-ice about 5 centimeters or so beneath the surface.

Also, handling the site’s soil with the scoop on Phoenix’s robotic arm and observing the disturbed soil show that it has clumping cohesiveness when first scooped up and that this cohesiveness decreases after the scooped soil sits exposed to air for a day or two. One possible explanation for those observations could be thin-film moisture in the ground.

The Phoenix team is laying plans for a vacation on the experiment of inserting the conductivity probe into the soil. The four successful insertions so far have all been into an undisturbed soil surface. The planned variation is to scoop away some soil first, so the inserted needles will reach closer to the subsurface ice layer.

“There should be some amount of unfrozen water attached to the surface of soil particles above the ice,” Zent said. “It may be too little to detect, but we haven’t finished looking yet.”

The thermal and electroconductivity probe, built by Decagon Devices Inc., Pullman, Washington, is mounted on Phoenix’s robotic arm. The probe is part of the lander’s Microscopy, Electrochemistry, and Conductivity instrument suite.

For more information, please visit the following websites:
http://www.nasa.gov/mission_pages/phoenix/main/index.html
http://www.jpl.nasa.gov/news/news.cfm?release=2008-171.

    
© 1997-2017 Space ExplorersTM, Inc. All Rights Reserved.
  Archived Issues Issue Index Contact Feedback Subscribe Home